Enhancement of the mechanical and biological properties of a biomembrane for tissue engineering the ocular surface.
نویسندگان
چکیده
INTRODUCTION In this study, we have developed and optimised a novel gelatin-chitosan (GC) substrate for use as a cellular carrier for tissue-engineered conjunctival epithelium. MATERIALS AND METHODS The substrate was fabricated by casting and the mechanical properties of the substrate, including tensile strength and elongation, were measured. Using the MTT, cell proliferation assay with rabbit conjunctival fibroblasts, we optimised the G:C ratio to enhance cytocompatibility. Rabbit conjunctival epithelial cells were immunostained using monoclonal antibodies for keratin 4 and pancytokeratin to investigate the biological effects of the GC substrate on the proliferation and differentiation of epithelial cells. RESULTS We found that increasing the amount of gelatin resulted in an increase in elasticity (from 1:9 to 1:1 ratio), reaching a maximum (101.89% +/- 7.13%) at a ratio of 1:1. The MTT assay showed that the proliferation of conjunctival fibroblasts significantly increased from 0.068 +/- 0.017 to 0.177 +/- 0.011 (P = 0.014) as the gelatin was increased from 20% (1:4) to 50% (1:1). Additional studies using tissue-cultured conjunctiva explants showed that these explants grew well on the substrate, forming a multilayered epithelium. Cell morphology on this substrate was similar to that of cells grown on culture dishes alone. Positive staining of keratin 4 and pancytokeratin indicated that the substrate supported normal differentiation of conjunctival epithelial cells. CONCLUSION By enhancing the proportion of gelatin, both the mechanical and biological properties of the chitosan substrate were improved. The results also suggest that this GC biomembrane may be a useful candidate for reconstructive tissue engineering of the conjunctiva.
منابع مشابه
Nanofibrillated chitosan/polycaprolactone bionanocomposite scaffold with improved tensile strength and cellular behavior
Objective(s): Fabrication of scaffolds with improved mechanical properties and favorable cellular compatibility is crucial for many tissue engineering applications. This study was aimed to improve mechanical and biological properties of polycaprolactone (PCL), which is a common biocompatible and biodegradable synthetic polymer in tissue engineering. Nanofibrillated chitosan (NC) was used as a n...
متن کاملHydroxyapatite-Hardystonite nanocomposite scaffolds prepared by the replacing the polyurethane polymeric sponge technique for tissue engineering applications
Objective (s): Silicate bioceramics containing Zn and Ca like hardystonite (Hr) with chemical formula Ca2ZnSi2O7 has attracted the attention of researchers in biomedical field due to its remarkable biological and mechanical properties. The new generation of bioceramics can applied in bone tissue engineering to substitute with infected bone. However, these zirconium-silicate bioceramics have pro...
متن کاملExperimental Evaluation of Surface Alterations Induced in Machining of Ti-6Al-4V Alloy
Surface integrity of workpieces after machining processes is one of the most essential requirements of engineers in advanced industries, since it has significant effect on performance and service life of the components. Based on this, thermal and mechanical loads generated by machining are responsible for change in mechanical properties of the machined workpiece and consequently, they should be...
متن کاملReinforcement of a decellularized extracellular matrix-derived hydrogel using nanofibers for cardiac tissue engineering
The role of heart disease in increasing worldwide death and the limited availability of organs for transplantation have encouraged multiple strategies to fabricate functional and implantable constructs. One of these strategies is to develop a biologically similar heart tissue scaffold, in which two types of fiber and hydrogel are commonly used. Toward this goal, taking advantage of both hydroge...
متن کاملReinforcement of a decellularized extracellular matrix-derived hydrogel using nanofibers for cardiac tissue engineering
The role of heart disease in increasing worldwide death and the limited availability of organs for transplantation have encouraged multiple strategies to fabricate functional and implantable constructs. One of these strategies is to develop a biologically similar heart tissue scaffold, in which two types of fiber and hydrogel are commonly used. Toward this goal, taking advantage of both hydroge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annals of the Academy of Medicine, Singapore
دوره 35 3 شماره
صفحات -
تاریخ انتشار 2006